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BACKGROUND

 Implementations of MapReduce

 Source-to-Source Compilers

 Synthesizing Efficient Implementations

 Query Optimizers and IRs.
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MOTIVATION
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CASPER

 Casper is a compiler that 
can automatically retarget sequential 
Java programs to Big Data processing 
frameworks such as Spark, Hadoop or 
Flink.
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CASPER
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MapReduce OPERATORS

 Map operator:

 Converts a value of type τ into a multiset of 
key-value pairs of types κ and ν.

 Reduce operator:

 Combines two values of type ν to produce a 
final value.

 Shuffling.
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PROGRAM SUMMARY

 The program summary, a high-level 
intermediate representation (IR), 
describes how the output of the code 
fragment (i.e., m) can be computed 
using a series of map and reduce stages 
from the input data (i.e., mat)
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SYSTEM ARCHITECTURE

 Program analyzer:

 search space description

 Verification condition

 Summary generator.

 Code generator.
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PROGRAM SUMMARIES

 High level IR:

 To express summaries that are translatable 
into the target API.

 Let the synthesizer efficiently search for 
summaries that are equivalent to the input 
program.

 Limited number of operations.
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SEARCH SPACE

 To generate the search space grammar, 
Casper analyzes the input.

 Code analyzer:

 Dataflow analysis

 Scanning function
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SEARCH SPACE
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VERIFYING SUMMARIES

 Verification conditions:

 Hoare logic

 Predicate logic
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SEARCH STRATEGY

 Input:

 a set of candidate summaries and invariants 
encoded as a grammar, 

 The correctness specification for the 
summary in the form of verification 
conditions.

 CEGIS Algorithm
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IMPROVISATION 

 Verifier failures:

 Casper must first prevent summaries 
that failed the theorem prover from 
being regenerated by the synthesizer.

 Incremental grammar generation:

 Helps find summaries quicker and is 
more syntactically expressive.
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IMPROVISATION 

 Search Algorithm for summaries:

 Each synthesized summary (correct 
or not) is eliminated from the search 
space, forcing the synthesizer to 
generate a new summary each time.

 When the grammar is exhausted, 
Casper returns the set of correct 
summaries Δ if it is non-empty
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COST MODEL

 Dynamic cost estimation:

 It counts the number of unique data 
values that are emitted as keys.
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IMPORTANT POINTS AND LIMITATION

 The IR does not currently model the full range of operators across different 
MapReduce implementations.

 Biasing the search towards smaller grammars likely produces program 
summaries that run more efficiently. Although this is not sufficient to guarantee 
optimality of generated summaries. It’s a tradeoff between efficient solution and 
time spent to generate the grammar.

 Casper can currently do this for basic Java statements, conditionals, functions, 
user-defined types, and loops.

 Recursive methods and methods with side-effects are not currently supported.
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EVALUATION
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QUESTIONS

 Casper covers limited set of operations and doesn’t perform well on ML related 
and Scientific images dataset. Does this make it usable only for beginner 
programmers?

 “Summaries are restricted to only those expressible using the IR, which lacks 
many features (e.g., pointers) that a general purpose language would have”. 
Does this restrict the scope of finding a better target code?

 Certain methods such as recursive methods are not supported(reason: they 
don’t gain any speedup). Is the paper not addressing issues that are essential 
part of general purpose coding?

 NOTE: The paper wanted to reduce complexity for user to learn multiple DSL.
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