
Automatically Leveraging MapReduce
Frameworks for
Data-Intensive Applications

Presented by: Ishank Jain

Department of Computer Science

03/19/2019

By Ahmad and Cheung

CONTENT

 Background

 Research Question

 Method

 Results

 Conclusion

 Questions

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 2

BACKGROUND

 Implementations of MapReduce

 Source-to-Source Compilers

 Synthesizing Efficient Implementations

 Query Optimizers and IRs.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 3

BACKGROUND: Implementations of MapReduce

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 4

BACKGROUND: Source-to-Source Compilers

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 5

BACKGROUND: Synthesizing Efficient Implementations

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 6

BACKGROUND: Query Optimizers and IRs.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 7

MOTIVATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 8

CASPER

 Casper is a compiler that
can automatically retarget sequential
Java programs to Big Data processing
frameworks such as Spark, Hadoop or
Flink.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 9

Image credit: https://casper.uwplse.org

CASPER

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 10

\

MapReduce OPERATORS

 Map operator:

 Converts a value of type τ into a multiset of
key-value pairs of types κ and ν.

 Reduce operator:

 Combines two values of type ν to produce a
final value.

 Shuffling.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 11

PROGRAM SUMMARY

 The program summary, a high-level
intermediate representation (IR),
describes how the output of the code
fragment (i.e., m) can be computed
using a series of map and reduce stages
from the input data (i.e., mat)

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 12

SYSTEM ARCHITECTURE

 Program analyzer:

 search space description

 Verification condition

 Summary generator.

 Code generator.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 13

PROGRAM SUMMARIES

 High level IR:

 To express summaries that are translatable
into the target API.

 Let the synthesizer efficiently search for
summaries that are equivalent to the input
program.

 Limited number of operations.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 14

SEARCH SPACE

 To generate the search space grammar,
Casper analyzes the input.

 Code analyzer:

 Dataflow analysis

 Scanning function

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 15

SEARCH SPACE

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 16

VERIFYING SUMMARIES

 Verification conditions:

 Hoare logic

 Predicate logic

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 17

SEARCH STRATEGY

 Input:

 a set of candidate summaries and invariants
encoded as a grammar,

 The correctness specification for the
summary in the form of verification
conditions.

 CEGIS Algorithm

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 18

IMPROVISATION

 Verifier failures:

 Casper must first prevent summaries
that failed the theorem prover from
being regenerated by the synthesizer.

 Incremental grammar generation:

 Helps find summaries quicker and is
more syntactically expressive.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 19

IMPROVISATION

 Search Algorithm for summaries:

 Each synthesized summary (correct
or not) is eliminated from the search
space, forcing the synthesizer to
generate a new summary each time.

 When the grammar is exhausted,
Casper returns the set of correct
summaries Δ if it is non-empty

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 20

COST MODEL

 Dynamic cost estimation:

 It counts the number of unique data
values that are emitted as keys.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 21

IMPORTANT POINTS AND LIMITATION

 The IR does not currently model the full range of operators across different
MapReduce implementations.

 Biasing the search towards smaller grammars likely produces program
summaries that run more efficiently. Although this is not sufficient to guarantee
optimality of generated summaries. It’s a tradeoff between efficient solution and
time spent to generate the grammar.

 Casper can currently do this for basic Java statements, conditionals, functions,
user-defined types, and loops.

 Recursive methods and methods with side-effects are not currently supported.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 22

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 23

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 24

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 25

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 26

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 27

QUESTIONS

 Casper covers limited set of operations and doesn’t perform well on ML related
and Scientific images dataset. Does this make it usable only for beginner
programmers?

 “Summaries are restricted to only those expressible using the IR, which lacks
many features (e.g., pointers) that a general purpose language would have”.
Does this restrict the scope of finding a better target code?

 Certain methods such as recursive methods are not supported(reason: they
don’t gain any speedup). Is the paper not addressing issues that are essential
part of general purpose coding?

 NOTE: The paper wanted to reduce complexity for user to learn multiple DSL.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 28

REFERENCE

Maaz Bin Safeer Ahmad, Alvin Cheung. Automatically Leveraging MapReduce Frameworks

for Data-Intensive Applications. Proc. ACM SIGMOD International Conference on

Management of Data, pages 1205-1220, 2018.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 29

