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BACKGROUND: Implementations of MapReduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
jeff@google.com, sanjay @google.com

Google, Inc.

Abstract given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.
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Translating Imperative Code to MapReduce

Cosmin Radoi Stephen J. Fink  Rodric Rabbah Manu Sridharan
University of Illinois IBM T.J. Watson Research Center Samsung Research America
cos@illinois.edu {sjfink,rabbah}@us.ibm.com m.sridharan@samsung.com
Abstract stream MapReduce frameworks [1, 9] provide significant

advantages for large-scale distributed parallel computation.
In particular, MapReduce frameworks can transparently sup-
port fault-tolerance, elastic scaling, and integration with a
distributed file system.

Additionally, MapReduce has attracted interest as a par-
allel programming model, independent of difficulties of dis-

teiluitad canamarntatinn (7411 AMdanDadiina hao haan chatom ta lha

We present an approach for automatic translation of sequen-
tial, imperative code into a parallel MapReduce framework.
Automating such a translation is challenging: imperative up-
dates must be translated into a functional MapReduce form
in a manner that both preserves semantics and enables paral-
lelism. Our approach works by first translating the input code
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BACKGROUND: Synthesizing Efficient Implementations

MapReduce Program Synthesis

Calvin Smith Aws Albarghouthi
University of Wisconsin—Madison, USA University of Wisconsin—Madison, USA
Abstract complexity of distributed computing, e.g., node failures,

load balancing, network topology, distributed protocols, etc.

By adding a layer of abstraction on top of distributed
systems and providing developers with a restricted API,
large-scale data processing platforms have become house-
hold names and indispensable tools for the modern software
developer and data analyst. In this paper, we ask whether
we can raise the level of abstraction even higher than what
state-of-the-art platforms provide, but this time with the goal
of unleashing the power of cloud computing for the average

By abstracting away the complexity of distributed sys-
tems, large-scale data processing platforms—MapReduce,
Hadoop, Spark, Dryad, etc.—have provided developers with
simple means for harnessing the power of the cloud. In
this paper, we ask whether we can automatically synthesize
MapReduce-style distributed programs from input—output
examples. Our ultimate goal is to enable end users to spec-
ify large-scale data analyses through the simple interface
of examples. We thus present a new aleorithm and tool for
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BACKGROUND: Query Optimizers and IRs.

Tupleware: Redefining Modern Analytics

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Cetintemel, Stan Zdonik

Department of Computer Science, Brown University

{crottyan, agg, kayhan, kraskat, ugur, sbz} @cs.brown.edu

Abstract

There is a fundamental discrepancy between the tar-
geted and actual users of current analytics frameworks.
Most systems are designed for the data and infrastructure
of the Googles and Facebooks of the world—petabytes of
data distributed across large cloud deployments consisting
of thousands of cheap commodity machines. Yet, the vast
majority of users operate clusters ranging from a few to
a few dozen nodes, analyze relatively small datasets of
up to several terabytes, and perform primarily compute-

Supporting the typical user, then, fundamentally
changes the way we should design analytics tools. Current
analytics frameworks are built around the major bottle-
necks of large cloud deployments, in which data move-
ment (disk to machine and across the network) 1s the pri-
mary performance bottleneck, machines are slow, and fail-
ures are the norm [[19]. Conversely, with smaller clusters
ranging in size from a few to a few dozen nodes, failures
are the exception. Most importantly, whereas single-node
performance is largely irrelevant in cloud deployments, it

........ lanaar ha ionarad vwihan tarcdatina cmall alactare
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MOTIVATION
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= Casper is a compiler that
can automatically retarget sequential
Java programs to Big Data processing
frameworks such as Spark, Hadoop or
Flink.

Image credit: https://casper.uwplse.org
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Access Path Selection
in a Relational Database Management Systen

P. Griffiths Selinger
M. M. Astrahan
D. D. Chamberlin
R. A. Lorie

;. T. G. Price

IBM Research Division, San Jose, California 95193

ABSTRACT: In a high level query and data retrieval. Nor does a user specify in what
manipulation language such as SQL, requests order joins are to be performed. The
are stated non-procedurally, without System R optimizer chooses bhoth join order
reference to access paths. This paper and an access path for each table in the
describes how System R chooses access paths SQL statement. 0f the many possible
for both simple (single relation) and choices, the optimizer chooses +the one
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R R =
MapReduce OPERATORS

= Map operator:

map : (mset[t], ;) — mset|(x,v)]
= Converts a Ve.llue of type T into a multiset of Am:T — mset[(k,v)]
key-value pairs of types k and v.
= Reduce operator:

. reduce : (mset|(x,v)], A;) — mset[(x.v)]
= Combines two values of type v to produce a

final value. Ar t(v,v) — v

= Shuffling.
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R R =
PROGRAM SUMMARY

= The program summary, a high-level

intermediate representation (IR), &S
: ummary (
describes how the output of the code m = map(reduce(map(mat, Am1), Ar), Am2)
fragment (i.e., m) can be computed Ami : (i, j, v) = {(i, v)}
using a series of map and reduce stages Ar i (v1,v2) = vy + 0,
from the input data (i.e., mat) Ama : (k, v) = {(k, v/cols)} )
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SYSTEM ARCHITECTURE

= Program analyzer:

Program Analyzer
" Sequental Java £ Static Code Ve
= search Space deSCI'lpthn Java Code Parser Il:dr:i?:;:: Analyzer Generator
. Verification COIlditiOIl Code Analysis and VCs r
S Summary Generator
|
ummary generator' Grammar Grammar Program Formal
Generator Partitioner | | Synthesizer Verifier
= Code generator.
Lifted Summaries
2, Code Generator
Outpul |
MapReduce =[=] Manitori i
o oo || Hadoop Spark Flink
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= High level IR: PS = VYuv. v=MR | Yo. v = MR[v;4]
MR = mapMR, A,) | reduce(MR, A,) | join(MR,MR) | data
= To express summaries that are translatable Am = f:(val)— {Emit)
into the target API. Ar = f:(val, valk)— Expr
Emit = emit(Expr, Expr) | if(Expr)emit(Expr, Expr) |
= Let the synthesizer efficiently search for if (Expr) emit(Expr, Expr) else Emit
summaries that are equivalent to the input Expr = Expr op Expr | op Expr | f(Expr,Expr, ...) |
program. n | var | (Expr, Expr)
« e . v € OQutput Variables vig € VariableID,
= Limited number of Operatlons' op € Dpﬁfamrs f € Library Methods
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= To generate the search space grammar, Ps

Casper analyzes the input.

= Code analyzer:
= Dataflow analysis

= Scanning function

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

MR
AF?E

Emit

Expr

Yu. v=MR | Yv. v=MR[v;4]

map(MR, A;) | reduce(MR, A;) | join(MR, MR) | data
f :(val)— {Emit|

f :(valy, val) — Expr

emit(Expr, Expr) | if(Expr) emit(Expr, Expr)
if(Expr) emit(Expr, Expr) else Emit

Expr op Expr | op Expr | f(Expr, Expr,...) |

n | var | (Expr, Expr)

op
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Property | G (g Gy G1:=map(mat,4,,) (2 := reduce(map(mat, 4,,),4,) 3 := map(reduce(map(mat, A, ),4,), Apa)
Map/Red . . ;
Seqence | ™ | M| morom ()= [G) ([ ()= 1G] (7))
- (ij,v) = [G)] _ ) @jv) =G +i)] ) @)= ()]
# Emits P P L I =40 Lt 1 1 Ay =1
in A, ! 2 2 m =\ (,v) = [Gv+i)] (1,v) = [(1.1), (v 1)) (i,j,v) = [+ 1) -v),3v)]
Kﬁ,.ﬂi}a—'lue . . lﬂt or I:E'J.L 1'1} = [(I +j.| EI)] : L i
T}-'IJE it it TUP]IE'ﬂ int:inl} L : ( ) (1;11 Lﬂ,,]. -1
1) = 1 -
() 1144 e ()t
A=y b2 T (v v) = (v L,v,.2)
(v, 15) 21y + 1 .
|

\

[ (k,v) = [(k,v), (v, )]
(k,v) = ((v.1,k),v.2)]
dmp =14 (k,v) = [(k,v/cols)]
(k,v) = if (v = 1)[(k,v)]
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R R =
VERIFYING SUMMARIES

= Verification conditions:

invariant(m.i)= 0<i<rows A

» Hoare logic m = map(reduce(map(mat|[0..i], Am1), Ar), Am2)
= Predicate logic (a) Outer loop invariant

Initiation (i = 0) — Inv(m, i)

Inv(m,i) A (i < rows) —

Continuation Inv(m[i — sum(mat[i])/cols],i + 1)

Termination Inv(m,i) A =(i < rows) — PS(m.i)

UNIVERSITY OF WATERLOO
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SEARCH STRATEGY

u II]I)llt: function synthesize (G, WC):

D = {3} // set of random program states
while true do

= a set of candidate summaries and invariants PS, 1MVi.n = generatecandidate(G, VC, @)
if ps is null then return null 7/ search space exhausted
encoded as a grammar, ¢ = boundedvVerify(ps, invi_n, VC)
if ¢ is null then return (ps, invi..n) // summary found
. . else =& U ¢ // counter-example found
= The correctness specification for the
summary in the form of verification funcrion Tandsummary (A, VO):
Ij] G = generateGrammar (A}
conditions.

I' = generateClasses(G)
£ = {3} 7/ summaries that failed wverification
fa

. = {} // summaries that passed verification
= CEGIS Algorithm for y €T do
while true do
c = synthesize(y - Q - A, VC)
QED if ¢ is null and A is null then
break // move to next grammar class
glse if ¢ is null then
return A f/ search complete

glse if fullverify(c, VC) then A=A U cC
else Q=01 cC

return null Y/ no solution found

UNIVERSITY OF WATERLOO
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IMPROVISATION

» Verifier failures:

= Casper must first prevent summaries
that failed the theorem prover from

being regenerated by the synthesizer.

Incremental grammar generation:

= Helps find summaries quicker and is
more syntactically expressive.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

function synthesize (G, VC):
D = {3} // set of random program states
while true do
ps, invy n = generateCandidate(G, vC, &)
if ps is null then return null 7/ search space exhausted
¢ = boundedvVerify(ps, invy n, VC)

if ¢ is null then return (ps, invi..n) // summary found
else =& U ¢ // counter-example found

function findSummary (A, VC):
G = generateGrammar (A}
I' = generateClasses(G)
£ = {3} 7/ summaries that failed wverification
A ={} // summaries that passed verification
for y €I do
while true do
c = synthesize(y - Q - A, VC)
QED if ¢ is null and A is null then
break // move to next grammar class
glse if ¢ is null then
return A f/ search complete

glse if fullverify(c, VC) then A=A U cC
else Q=01 cC

return null Y/ no solution found
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IMPROVISATION

= Search Algorithm for summaries:

= Each synthesized summary (correct
or not) is eliminated from the search
space, forcing the synthesizer to
generate a new summary each time.

= When the grammar is exhausted,
Casper returns the set of correct
summaries A if it is non-empty

function synthesize (G, VC):
D = {3} // set of random program states
while true do
ps, invy n = generateCandidate(G, vC, &)
if ps is null then return null 7/ search space exhausted
¢ = boundedvVerify(ps, invy n, VC)

if ¢ is null then return (ps, invi..n) // summary found
else =& U ¢ // counter-example found

function findSummary (A, VC):

G = generateGrammar (A}
I' = generateClasses(G)
£ = {3} 7/ summaries that failed wverification
A ={} // summaries that passed verification

for y €I do
while true do

QED c = synthesize(y - Q - A, VC)

if ¢ is null and A is null then
break // move to next grammar class
glse if ¢ is null then
return A f/ search complete
glse if fullverify(c, VC) then A=A U cC
else 2 =01 cC
return null /Y no solution found

UNIVERSITY OF WATERLOO
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R R =
COST MODEL

: : : |Am|
= Dynamic cost estimation: costm(Am. N, Wm) = Wn + N + Z sizeQ f(emit;) * pi
= It counts the number of unique data =1
values that are emitted as keys. cost,(Ar, N, Wy) = Wy % N # sizeOf(A,) * €(A,)

costj(N1,Nz2, W;) = Wj « N1 + Ny * sizeO f(emit;) = p;

UNIVERSITY OF WATERLOO
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R R =
IMPORTANT POINTS AND LIMITATION

= The IR does not currently model the full range of operators across different
MapReduce implementations.

= Biasing the search towards smaller grammars likely produces program
summaries that run more efficiently. Although this is not sufficient to guarantee
optimality of generated summaries. It’s a tradeoff between efficient solution and
time spent to generate the grammar.

= Casper can currently do this for basic Java statements, conditionals, functions,
user-defined types, and loops.

= Recursive methods and methods with side-effects are not currently supported.

UNIVERSITY OF WATERLOO
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R R =
EVALUATION

Suite # Translated | Mean Speedup | Max Speedup

Phoenix 7/11 14.8x 32x

Ariths 11/11 12.6x 18.1x

Stats 18 /19 18.2x 28.9x

Bigﬂ 6/8 21.5x 32.2x

Fiji 23 /35 18.1x 24.3x

TPC-H 10/ 10 31.8x 48.2x

[terative 7/7 18.4x 28.8x
Automatically Leveraging MapReduce Frameworks fo %ﬁ‘ﬂ Uy RS Ty OF WATERLOO
Data-Intensize Applicgatigns P ! ' wer ' PAGE 23 FACULTY OF MATHEMATICS



EVALUATION

W Manual (Spark) m Casper (Spark)

MOLD (Spark)
MW Casper (Hadoop)

Casper (Flink
40x per ( )

30x

il l I L I
[ 1 .

O
String Word Linear Wikipedia Anscombe
Match Count Regression Hlstogram PageCount Transform

(a) CAsPER achieves speedup competitive with manual translations

Speedup
o
o
k4
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R R =
EVALUATION

&
-
o

H Casper 600 Hl Casper

M SparksQlL - 450 MSparkTut

Runtime (s)
W
(] N
o o
Runtime (s
L
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o
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L
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. il _
. m .
Qi1 Q6 Q15 Q17 LogisticR PageRank
(b) TPC-H benchmarks (c) Iterative algorithms
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EVALUATION

Source Mean Mean Mean # | Mean TP
Time (s) LOC Op Failures
Phoenix o4 | 138(13.1) | 23(21) | 035
Ariths 223 04(76) | 16(1.2) 4
Stats 351 76(58) | 18(18) 06
Big/ 112 | 136(10) | 18(20) 04
Fiji 1204 | 72(74) | 14(16) 01
TPC-H 476 59 (n/a) | 7.25(n/a) 0
Tterative 788 | 33(37) | 45(3.5) 2
PAGE 26
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EVALUATION

With Incr. Without Incr.
Benchmark )

Grammar Grammar
WordCount 2 827
StringMatch 24 416
Linear Regression 1 04
3D Histogram 5 118
YelpKids 1 286
Wikipedia PageCount 1 568
Covariance 5 11
Hadamard Product 1 484
Database Select 1 m 397
Anscombe Transform 2 p 78
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R R =
QUESTIONS

= Casper covers limited set of operations and doesn’t perform well on ML related
and Scientific images dataset. Does this make it usable only for beginner
programmers?

= “Summaries are restricted to only those expressible using the IR, which lacks
many features (e.g., pointers) that a general purpose language would have”.
Does this restrict the scope of finding a better target code?

= Certain methods such as recursive methods are not supported(reason: they
don’t gain any speedup). Is the paper not addressing issues that are essential
part of general purpose coding?

= NOTE: The paper wanted to reduce complexity for user to learn multiple DSL.
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