
Automatically Leveraging MapReduce
Frameworks for
Data-Intensive Applications

Presented by: Ishank Jain

Department of Computer Science

03/19/2019

By Ahmad and Cheung

CONTENT

 Background

 Research Question

 Method

 Results

 Conclusion

 Questions

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 2

BACKGROUND

 Implementations of MapReduce

 Source-to-Source Compilers

 Synthesizing Efficient Implementations

 Query Optimizers and IRs.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 3

BACKGROUND: Implementations of MapReduce

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 4

BACKGROUND: Source-to-Source Compilers

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 5

BACKGROUND: Synthesizing Efficient Implementations

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 6

BACKGROUND: Query Optimizers and IRs.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 7

MOTIVATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 8

CASPER

 Casper is a compiler that
can automatically retarget sequential
Java programs to Big Data processing
frameworks such as Spark, Hadoop or
Flink.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 9

Image credit: https://casper.uwplse.org

CASPER

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 10

\

MapReduce OPERATORS

 Map operator:

 Converts a value of type τ into a multiset of
key-value pairs of types κ and ν.

 Reduce operator:

 Combines two values of type ν to produce a
final value.

 Shuffling.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 11

PROGRAM SUMMARY

 The program summary, a high-level
intermediate representation (IR),
describes how the output of the code
fragment (i.e., m) can be computed
using a series of map and reduce stages
from the input data (i.e., mat)

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 12

SYSTEM ARCHITECTURE

 Program analyzer:

 search space description

 Verification condition

 Summary generator.

 Code generator.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 13

PROGRAM SUMMARIES

 High level IR:

 To express summaries that are translatable
into the target API.

 Let the synthesizer efficiently search for
summaries that are equivalent to the input
program.

 Limited number of operations.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 14

SEARCH SPACE

 To generate the search space grammar,
Casper analyzes the input.

 Code analyzer:

 Dataflow analysis

 Scanning function

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 15

SEARCH SPACE

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 16

VERIFYING SUMMARIES

 Verification conditions:

 Hoare logic

 Predicate logic

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 17

SEARCH STRATEGY

 Input:

 a set of candidate summaries and invariants
encoded as a grammar,

 The correctness specification for the
summary in the form of verification
conditions.

 CEGIS Algorithm

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 18

IMPROVISATION

 Verifier failures:

 Casper must first prevent summaries
that failed the theorem prover from
being regenerated by the synthesizer.

 Incremental grammar generation:

 Helps find summaries quicker and is
more syntactically expressive.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 19

IMPROVISATION

 Search Algorithm for summaries:

 Each synthesized summary (correct
or not) is eliminated from the search
space, forcing the synthesizer to
generate a new summary each time.

 When the grammar is exhausted,
Casper returns the set of correct
summaries Δ if it is non-empty

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 20

COST MODEL

 Dynamic cost estimation:

 It counts the number of unique data
values that are emitted as keys.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 21

IMPORTANT POINTS AND LIMITATION

 The IR does not currently model the full range of operators across different
MapReduce implementations.

 Biasing the search towards smaller grammars likely produces program
summaries that run more efficiently. Although this is not sufficient to guarantee
optimality of generated summaries. It’s a tradeoff between efficient solution and
time spent to generate the grammar.

 Casper can currently do this for basic Java statements, conditionals, functions,
user-defined types, and loops.

 Recursive methods and methods with side-effects are not currently supported.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 22

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 23

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 24

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 25

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 26

EVALUATION

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 27

QUESTIONS

 Casper covers limited set of operations and doesn’t perform well on ML related
and Scientific images dataset. Does this make it usable only for beginner
programmers?

 “Summaries are restricted to only those expressible using the IR, which lacks
many features (e.g., pointers) that a general purpose language would have”.
Does this restrict the scope of finding a better target code?

 Certain methods such as recursive methods are not supported(reason: they
don’t gain any speedup). Is the paper not addressing issues that are essential
part of general purpose coding?

 NOTE: The paper wanted to reduce complexity for user to learn multiple DSL.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 28

REFERENCE

Maaz Bin Safeer Ahmad, Alvin Cheung. Automatically Leveraging MapReduce Frameworks

for Data-Intensive Applications. Proc. ACM SIGMOD International Conference on

Management of Data, pages 1205-1220, 2018.

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

PAGE 29

